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Abstract— In this paper, a novel electrochemical model for
LiFePO4 battery cells that accounts for the positive particle
lithium intercalation and deintercalation dynamics is proposed.
Starting from the enhanced single particle model, mass trans-
port and balance equations along with suitable boundary
conditions are introduced to model the phase transformation
phenomena during lithiation and delithiation in the positive
electrode material. The lithium-poor and lithium-rich phases
are modeled using the core-shell principle, where a core com-
position is encapsulated with a shell composition. The coupled
partial differential equations describing the phase transforma-
tion are discretized using the finite difference method, from
which a system of ordinary differential equations written in
state-space representation is obtained. Finally, model parameter
identification is performed using experimental data from a 49Ah
LFP pouch cell.

I. INTRODUCTION

Recently, LiFePO4 (LFP) batteries have received signif-
icant attention as the battery chemistry to use in electric
vehicles (EVs) and other energy storage applications for
their long-lasting, safe, and environmentally-friendly and
less costly materials. Two phases exist during lithiation and
delithiation of LiFePO4 electrodes: one Li-rich and one Li-
poor [1], [2]. As a result of the coexistence of the two
phases, the positive electrode open circuit potential (OCP)
shows a plateau and additionally, the different composition
of the two phases results in voltage hysteresis. A model
that incorporates the description of the two phases can
help understand lithium intercalation and deintercalation in
LiFePO4 electrodes and, ultimately, gain information on the
electrochemical states. Physics-based models proposed for
this chemistry are a few. In the many-particle model, lithium
is exchanged between individual particles and sequential
lithiation and delithiation is demonstrated [3]. However, ki-
netic and transport equations are ignored, making this model
unsuitable for high C-rate or when a careful description of
the electrochemical states is needed. In [4], the core-shell
approach is proposed to model phase transitions in LFP
batteries. At the cost of adding some negligible complex-
ity to the electrochemical model – namely, a mass balance
equation – this technique allows for a detailed description
of the battery intercalation and deintercalation dynamics.
This approach assumes isotropic diffusion in the positive
particles, while using a shell and core phase interacting via
a moving boundary to describe phase transitions. To account
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for the path dependence of battery operation, the core-
shell model prescribes different phases to the core and shell
depending on whether the battery is charging or discharging.
Successful implementation of this core-shell model has been
demonstrated in [5], [6] for the pseudo-two-dimensional
(P2D) model and single particle model (SPM), respectively.
In this paper, a core-shell enhanced single particle model
(ESPM) is formulated. Two phases, one poor and one rich
in lithium, are used to describe the change of phase in the
positive electrode, where the core of the cell is assumed to be
at one phase and covered by the surrounding shell phase upon
intercalation/deintercalation. The proposed modeling strategy
allows also to model the one-phase at the beginning (and at
the end) of charge (and discharge). A careful discretization
of the electrochemical partial differential equations (PDEs)
is proposed and used to convert the model into a system of
ordinary differential equations (ODEs), allowing for an effec-
tive numerical solution. Moreover, an optimization problem
is formulated to identify the unknown model parameters.
The remainder of the paper is organized as follows. Section
II describes the governing equations for intercalation and
deintercalation in LFP batteries and formulates the core-shell
ESPM model. In Section III, core-shell model equations are
discretized and converted into a system of ODEs. Section IV
describes the parameter identification procedure. Finally, in
Section V the model performance over charge and discharge
experimental data is shown.

II. CELL GOVERNING EQUATIONS

A. Physical principles

When a lithium-ion battery is being discharged (I > 0),
positively charged lithium ions (Li+) move from the negative
to the positive electrode, whereas the lithium ions move
back from the positive electrode to the negative electrode
in charging (I < 0). Deintercalation (intercalation) occurs
when lithium ions leave (enter) one electrode. In LFP bat-
teries, the intercalation and deintercalation process in the
LiFePO4 electrode is described by the following chemical

reaction: FePO4 + Li+ + e−
charge
←−−−−→

discharge
LiFePO4. During dis-

charge (→), lithium intercalates into the positive electrode
and LiFePO4 is formed. During charge (←), an oxidation
reaction takes place and FePO4, Li+, and e− are formed.
According to [3], in LFP batteries the positive particle
experiences the formation of two phases: a Li-poor phase,
denoted α, and a Li-rich phase, denoted β. To understand
the intercalation and deintercalation phenomena in LFP
batteries, the positive particle OCP (Up) is analyzed during
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Fig. 1: Figures (a), (b), and (c) show the behavior of the positive
particle OCP during discharge (the black dotted line represents
the charge OCP). During the one-phase regions (a) and (c), the
potential decreases, whereas in (b), the coexistence of two phases
leads to a flat OCP. Figures (d), (e), and (f) show the core-shell
representation of the particle used to describe the one-phase regions
((d) and (f)) and the transition from the α- to β-phase (e).

discharge (Fig. 1 (a), (b), and (c)). First, lithium intercalates
into the positive electrode and the α-phase is formed. This
corresponds to Fig. 1(a), with a rapid decrease of the OCP.
As intercalation continues, lithium concentration increases
and, once the normalized concentration θαp is reached, the
formation of the β-phase starts. In this condition, the α-phase
transitions into the β-phase and, while these two phases
coexist (Fig. 1(b)), the OCP remains constant. The transition
ends at the normalized concentration θβp and, after this point,
the positive particle is all at β-phase and the OCP decreases
until the end of discharge (Fig. 1(c)). During charge, the
process is reversed – from (c) to (a) – and a different OCP is
followed. As shown in [3], during charge the surface of the
positive electrode is in β-phase, which produces the Charge
OCP shown in Fig. 1(c).

B. Model development

To model the positive particle phase transition described
in Section II-A, the ESPM developed in [7] is used as a
starting point. In the ESPM, both the positive and negative
spherical particles are modeled in terms of mass and charge
transport in the electrolyte phase (Eqs. (4) and (5)), and mass
transport in the solid phase (Eq. (6)). ESPM is limited for

LFP applications because it does not allow for the description
of the positive particle transition from α- to β-phase. In
this work, the positive particle dynamics in discharge are
modeled to reproduce the phases depicted in Fig. 1 (d), (e),
and (f). When the discharge process starts, the particle is
in α-phase (d). In this scenario, the positive particle solid
phase concentration is modeled via ESPM, namely using
Eq. (6) (and boundary conditions (7) and (8)). While the
positive electrode is being lithiated, the OCP decreases until
the normalized concentration reaches θαp and, after this point,
the formation of the β-phase starts. Two phases coexist inside
the particle at this point which are modeled using the core-
shell paradigm. As shown in Fig. 1(e), the core of the cell
is assumed to be at one phase (α) and then as intercalation
evolves, covered by the surrounding shell phase (β). The core
is assumed to be at a constant and uniform concentration
cαs,p = θαp · cmaxs,p and subject to a shrinking process which
replaces the α- with β-phase. This process is modeled via
the following mass balance:

sign(I)(cαs,p − cβs,p)
drp
dt

= Ds,p
∂cs,p
∂r

∣∣∣∣
r=rp

(1)

describing the motion of the interface (or boundary) rp
between the α- and β-phase while assuming drp/dt to be
function of the concentration gradient ∂cs,p/∂r only. In Eq.
(1), cαs,p and cβs,p are constants defined with respect to θαp
and θβp , respectively (see Eq. (10)), cs,p is the solid phase
concentration, Ds,p is the solid phase diffusion coefficient,
and r is the radial coordinate (i.e., the coordinate along
the radius of the particle). The term sign(I) accounts for
the fact that, during discharge, α-phase transitions to β-
phase and that the opposite happens during charge. The
moving boundary rp corresponds to the distance between
the center of the particle and the interface between α and β.
To complete the model, the following boundary and initial
conditions are introduced:

cs,p
∣∣
r=rp

= cβs,p, cs,p
∣∣
t=t̄

= cαs,p, rp
∣∣
t=t̄

= Rp − ε (2)

The first equality enforces the concentration at the interface
rp to be always equal to cβs,p. The second and third equalities
are initial conditions for the core-shell model when, at the
time instant t̄, the system moves from Fig. 1(d) to (e). These
conditions enforce the core to be at a uniform and constant
concentration cαs,p and rp to be equal to Rp− ε (with ε small
enough). In the shell region, cβs,p corresponds to the initial
condition and, for r > rp, the solid phase concentration rises
according to Eq. (6). Finally, once the core is completely
consumed, the particle is fully in β-phase and intercalation
occurs until the end of the discharge process, as shown in
Fig. 1(f). During charge, the opposite process occurs. In
this scenario, the core is in β-phase and shrinks until the
whole particle is in α-phase. General equations for charge
and discharge are provided in (9a), (9b), (11), and (12).
Governing equations are summarized in Table I. Additional
equations for the core-shell ESPM – transport parameters,
active area, porosity, cell voltage, overpotential, and SOC –
are summarized in Table II.
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TABLE I: Governing equations of the core-shell ESPM model.

Jn =
I

AcellFLn
, Jp =

−I
AcellFLp

, Js = 0 (3)

Mass transport in the electrolyte phase, i ∈ M

εi
∂c

∂t
=

∂

∂x

(
Deff,i(c, T )

∂c

∂x

)
+ (1− t+)Ji

(4)

Charge transport in the electrolyte phase, i ∈ M

κeff,i(c)
∂

∂x

(
∂φe

∂x

)
−

2RTκeff,i(c)v(c, T )

F

∂2 ln(c)

∂x2
+ FJi = 0

(5)

Mass transport in the solid phase, i ∈ M̂

∂cs,i

∂t
= Ds,i

∂2cs,i

∂r2
+

2Ds,i

r

∂cs,i

∂r
(6)

∂cs,i

∂r

∣∣∣∣
r=0

= 0 (7)

∂cs,p

∂r

∣∣∣∣
r=Rp

=
I

Ds,papAcellFLp
,
∂cs,n

∂r

∣∣∣∣
r=Rn

=
−I

Ds,nanAcellFLn
(8)

C
or

e-
sh

el
l

sign(I)(c
α
s,p − c

β
s,p)

drp

dt
= Ds,p

∂cs,p

∂r

∣∣∣∣
r=rp

cs,p
∣∣
r=rp

= g(I), cs,p
∣∣
t=t̄

= ick, rp
∣∣
t=t̄

= Rp − ε

(9a)

(9b)

III. NUMERICAL SOLUTION APPROACH

Eqs. in Table I constitute a system of coupled PDEs. In
this section, PDEs are discretized using the finite difference
method (FDM), for mass transport in the solid phase, and
finite volume method (FVM), for mass transport in the
electrolyte phase. The system of ODEs obtained from the
numerical discretization is converted into a convenient state-
space representation and solved relying on numerical solvers
such as ode15s. In the following, Eqs. (6), (8), (9a), and
(9b) are analyzed and discretized using FDM. Further details
on the solution of the remaining governing equations for the
electrolyte and negative particle can be found in [9]. The
reader is referred to [10] for full explanation of notation and
symbols used in this paper.

A. Coordinate system transformation

Starting from the positive particle core-shell model de-
scribed in Section II, the transformation proposed in [4]
is used to move from the radial coordinate system to the
normalized coordinate χ, χ =

r−rp
Rp−rp ∈ [0, 1], where r

represents a given radial position in the particle and rp
the position of the moving boundary. This transformation
allows to remap the discretization of the shell region from
[rp, Rp] to [0, 1], making the domain stationary while the
boundary is moving. In the initial condition rp

∣∣
t=t̄

= Rp− ε
(Eq. (2)), the small enough ε avoids the rise of singularities
during transitions from one-phase to two-phase condition.
According to [5], the left hand side of the positive particle
diffusion Eq. (6) can be transformed from r to χ domain as

TABLE II: Additional equations for the core-shell ESPM model.

Current convention
I > 0, discharge

I = 0,

I < 0, charge

(10)

Concentration at the moving boundary

g(I) =


cβs,p = θβp · cmaxs,p , if I > 0

cαs,p = θαp · cmaxs,p , if I < 0

0, otherwise
(11)

Core initial condition

ick =

{
cαs,p, k = discharge

cβs,p, k = charge
(12)

Diffusivity and conductivity

Deff,i(c, T ) = D(c, T ) · εbruggi , i ∈M (13)

→ D(c, T ) = 0.0001 · 10

(
−4.51− 59.22

T−(206.25+10c/1000)

)
c/1000

κeff,i(c) = κ(c) · εbruggi , i ∈M (14)

→ κ(c) =

(
cavg/1000

1.05

)0.68

exp[−0.1(cavg/1000− 1.05)2+

− 0.56 (cavg/1000− 1.05)]

Active area

ai =
3

Ri
νi, i ∈ M̂ (15)

Porosity

εi = 1− νi − νi,filler, i ∈ M̂ (16)

Cell voltage

Φs,i = Ui(θ
surf
i ) + ηi, i ∈ M̂ (17)

∆Φe =
2RTv(c, T )

F
ln

(
c(L)

c(0)

)
, with L = Ln + Ls + Lp (18)

→ v(c, T ) = 0.601− 0.24(cavg/1000)1/2+

+ 0.982 [1− 0.0052(T − 293)] (cavg/1000)3/2 [8]

V = Φs,p − Φs,n + ∆Φe − I(Rl +Rel) (19)

Rel =
1

2Acell

(
Ln

κeff,n(c)
+

2Ls

κeff,s(c)
+

Lp

κeff,p(c)

)
(20)



Up = 3.382− 0.2955 exp
[
−44.99(1− θsurfp )0.8707

]
+

+ 10−20.71 exp
[
14.17(1− θsurfp )8.128

]
+

+ 10−40.82 exp
[
100(1− θsurfp )1.213

] , discharge

Up = 3.442− 0.1774 exp
[
−127.7(1− θsurfp )0.7921

]
+

+ 10−2.123 exp
[
16.56(1− θsurfp )24.08

]
+

+ 10−10.29 exp
[
99.91(1− θsurfp )22.17

] , charge

(21)

θsurfn = cs,n/c
max
s,n , θsurfp = cs,p/c

max
s,p (22)

Electrochemical overpotential

ηi =
RT

0.5F
sinh−1

(
I

2Acell ai Li i0,i

)
, i ∈ M̂ (23)

i0,i = kiF

√
cavgcsurfs,i

(
cmaxs,i − c

surf
s,i

)
, i ∈ M̂ (24)

State of charge

SOCn =
θbulkn − θn,0%
θn,100% − θn,0%

, SOCp =
θp,0% − θbulkp

θp,0% − θp,100%
Negative particle

θbulkn =
3

cmaxs,n R3
n

∫ Rn

0
cs,nr

2dr

Positive particle

θbulkp =
3

cmaxs,p R3
p

∫ Rp

0
cs,pr

2dr

(25)

1771

Authorized licensed use limited to: Stanford University. Downloaded on October 05,2022 at 21:02:36 UTC from IEEE Xplore.  Restrictions apply. 



follows: (
∂cs,p
∂t

)
r

=
∂cs,p
∂χ

∂χ

∂t
+

(
∂cs,p
∂t

)
χ

(26)

From the following relationships ∂χ
∂t = ∂χ

∂rp

∂rp
∂t ,

∂χ
∂rp

=
χ−1
Rp−rp , Eq. (26) is rewritten as:(

∂cs,p
∂t

)
r

=
∂cs,p
∂χ

(
χ− 1

Rp − rp

)
∂rp
∂t

+

(
∂cs,p
∂t

)
χ

(27)

The change of coordinate system for the right hand side
terms of Eq. (6) is obtained introducing the following re-
lationships:

∂2cs,p
∂r2

=
∂

∂r

(
∂cs,p
∂r

)
=

∂

∂r

(
∂cs,p
∂χ

∂χ

∂r

)
∂cs,p
∂r

=
∂cs,p
∂χ

∂χ

∂r
,

∂

∂r
=
∂χ

∂r

∂

∂χ
,

∂χ

∂r
=

1

Rp − rp
(28)

Therefore, relying on Eq. (28), the terms on the right hand
side are reformulated as follows:

Ds,p
∂2cs,p
∂r2

=
∂2cs,p
∂χ2

Ds,p

(Rp − rp)2
(29)

2Ds,p

r

∂cs,p
∂r

=
∂cs,p
∂χ

[
2Ds,p

r(Rp − rp)

]
(30)

From Eqs. (27), (29), and (30), the solid phase mass transport
in the positive particle (Eq. (6)) is rewritten as:

∂cs,p
∂t

=
∂2cs,p
∂χ2

[
Ds,p

(Rp − rp)2

]
+

+
∂cs,p
∂χ

[
2Ds,p

r(Rp − rp)

]
− ∂cs,p

∂χ

∂rp
∂t

[
χ− 1

Rp − rp

]
(31)

Finally, starting from Eq. (28), boundary conditions (8), (9b),
and the mass balance (9a) are also rewritten in terms of the
χ coordinate:

∂cs,p
∂χ

∣∣∣∣
χ=1

=
I(Rp − rp)

Ds,papAcellFLp
(32)

cs,p
∣∣
χ=0

= g(I) cs,p
∣∣
t=t̄

= ick (33)

sign(I)(cαs,p − cβs,p)(Rp − rp)
drp
dt

= Ds,p
∂cs,p
∂χ

∣∣∣∣
χ=0

(34)

where χ = 0 coincides with the moving boundary rp and
χ = 1 corresponds to the surface or, in other words, Rp.

B. Discretization

The core-shell model, described by Eqs. (31), (32), (33),
and (34), is discretized into Nr nodes. The right-sided and
central finite difference schemes are used for the first and sec-
ond derivative approximations: ∂u∂χ

∣∣
χl
≈ ul+1−ul

∆χ
, ∂2u

∂χ2

∣∣
χl
≈

ul+1−2ul+ul−1

∆2
χ

, where u is a mute variable and l defines
the index of the discretization point χl such that χl =
rl−rp
Rp−rp , ∆χ = χl − χl−1 where rl, the radial position
along the shell region, takes the following form rl = rp +

l∆r, ∆r =
Rp−rp
Nr−1 .

1) Discretization of mass balance: First, Eq. (34) is
rewritten as:

drp
dt

=
sign(I)Ds,p

(cαs,p − c
β
s,p)(Rp − rp)

∂cs,p
∂χ

∣∣∣∣
0

(35)

Approximating the term ∂cs,p
∂χ

∣∣
0

as cs,p
∂χ

∣∣
0
≈ cs,p1−cs,p0

∆χ
and

knowing from Eq. (37) (introduced in the next paragraph)
that cs,p0 = g(I) , the discretized version of the mass balance
is obtained:
drp
dt

=
M1

∆χ
(cs,p1

− g(I)),M1 =
sign(I)Ds,p

(cαs,p − c
β
s,p)(Rp − rp)

(36)

2) Discretization of boundary conditions: The moving
boundary condition at χ = 0 (Eq. (33)) takes the following
form:

cs,p0
= g(I)→ ∂cs,p0

∂t
= 0 (37)

The fixed boundary condition (32) is rewritten as:

∂cs,p
∂χ

∣∣∣∣
Nr−1

=
I(Rp − rp)

Ds,papAcellFLp
(38)

Approximating the left hand side of Eq. (38) as ∂cs,p
∂χ

∣∣
Nr−1

≈
cs,pNr

−cs,pNr−1

∆χ
, the following is obtained:

cs,pNr = cs,pNr−1
+M2I, M2 =

(Rp − rp)∆χ

Ds,papAcellFLp
(39)

3) Discretization of the solid phase mass transport: Eq.
(31) is discretized using both the right-sided and central
finite difference schemes. For l ∈ [1, Nr − 2], the following
expression is obtained:

∂cs,p
∂t

∣∣∣∣
l

=
M3

∆2
χ

(cs,pl+1
− 2cs,pl + cs,pl−1

) +
M4

∆χ
(cs,pl+1

− cs,pl)

(40)
with M3 and M4 defined as M3 =

Ds,p
(Rp−rp)2 , M4 =

2Ds,p
[χl(Rp−rp)+rp](Rp−rp)−

χl−1
Rp−rp

M1

∆χ
(cs,p1−g(I)). At l = Nr−

1, the discretized solid phase mass transport equation takes
the following form ∂cs,p

∂t

∣∣
Nr−1

= M3

∆2
χ

(cs,pNr − 2cs,pNr−1
+

cs,pNr−2
) + M4

∆χ
(cs,pNr − cs,pNr−1

) which, using Eq. (39), is
rewritten as:
∂cs,p
∂t

∣∣∣∣
Nr−1

=
M3

∆2
χ

(M2I − cs,pNr−1
+ cs,pNr−2

) +
M2M4

∆χ
I

(41)

From Eq. (37), at l = 0 the time derivative ∂cs,p0

∂t = 0.

C. State-space representation

Eqs. (36), (37), (40), and (41) constitute a system
of coupled ODEs which can be conveniently rewrit-
ten in state-space form. Given rp and the vector of
discretized solid phase concentration states: cs,p =
[cs,p1

cs,p2
. . . cs,pNr−2

cs,pNr−1
]T ∈ R(Nr−1)×1, the

following state vector is defined x =

[
rp
cs,p

]
∈ RNr×1.

Introducing the variables η1 = M3

∆2
χ
, η2 = M4

∆χ
, η3 =
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M2

∆χ

(
M4 + M3

∆χ

)
, and η4 = M1

∆χ
, the positive particle state-

space representation takes the following form:

ẋ = η1A1x + η2A2x + η3BI + η1G (42)

where matrices A1 and A2 are given by:

A1 =



0 η4/η1 0 0 0 . . . 0
0 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
0 0 1 −2 1 . . . 0
0 0 0 1 −2 . . . 0

...
...

...
...

...
. . .

...
0 0 0 0 0 . . . −1


Nr×Nr

(43)

A2 =



0 0 0 0 0 . . . 0
0 −1 1 0 0 . . . 0
0 0 −1 1 0 . . . 0
0 0 0 −1 1 . . . 0
0 0 0 0 −1 . . . 0

...
...

...
...

...
. . .

...
0 0 0 0 0 . . . 0


Nr×Nr

(44)

and vectors B and G are defined as:

B =



0
0
0

...
0
1


Nr×1

, G =



−η4/η1g(I)
g(I)

0

...
0
0


Nr×1

(45)

IV. PARAMETERS IDENTIFICATION

Model parameters are identified using voltage vs
capacity data for a Qnom = 49Ah LFP pouch cell
charged and discharged at C/12 constant current (CC),
at 25◦C. Using the particle swarm optimization (PSO)
algorithm1, the following parameter vector is identified Θ =
[Rn, Rp, Acell, Ds,n, Ds,p, θn,100%, θn,0%, θp,100%, θp,0%, θ

α
p ,

θβp , Rl]. An a posteriori correlation analysis of the identified
parameters is shown in [11]. For the core-shell modeling
framework to be correctly implemented, the identification
of θαp and θβp is crucial to properly define the transition
from one-phase (α or β) to two-phase (α and β). The
identification of the model parameters is performed
following the framework established in [12], that relies on
minimizing the following multi-objective cost function both
in charge and discharge:

Jk(Θ) = w1

√√√√ 1

N

N∑
j=1

(
V kexp(j)− V k(Θ; j)

V kexp(j)

)2

+ w2

√√√√ 1

N

N∑
j=1

(SOCkexp(j)− SOCkn(Θ; j))2

+ w3

√√√√ 1

N

N∑
j=1

(SOCkexp(j)− SOCkp (Θ; j))2

(46)

where k ∈ K = {charge,discharge}, N is the number
of samples, SOCkp and SOCkn are the simulated state of
charge at the positive and negative electrodes (Eq. (25)), V k

is the simulated voltage profile (Eq. (19)), V kexp and SOCkexp
are the experimental cell voltage and state of charge from
Coulomb counting, respectively. The weights w1, w2, and

1MATLAB particleswarm function: https://www.mathworks.
com/help/gads/particleswarm.html

TABLE III: Identification results.

Symbol Lower
bound

Upper
bound

Identified
vector Θ

Unit

Rn 1×10−6 2×10−5 1.0×10−6 (m)

Rp 1×10−8 1×10−5 4.3×10−8 (m)

Acell 1.41 1.73 1.491 (m2)

Ds,n 1×10−15 1×10−10 6.9×10−12 (m2/s)

Ds,p 1×10−18 1×10−11 3.1×10−17 (m2/s)

θn,100% 0.7 0.95 0.835 (−)

θn,0% 1×10−4 0.2 0.010 (−)

θp,100% 0.05 0.15 0.070 (−)

θp,0% 0.8 1 0.882 (−)

θαp 0.1 0.2 0.198 (−)

θβp 0.8 0.9 0.800 (−)

Rl 1×10−3 0.1 0.001 (Ω)

J(Θ) = 0.011 (-)

w3 are user-defined dimensionless parameters here equal to
one. The parameter vector is assumed to be the same for
charge and discharge because the hysteresis is accounted for
by the OCP curves in Eq. (21). In doing so, we also speed up
identification by keeping the number of identified parameters
at a minimum. The multi-objective cost function is subject
to the following constrains:

(a) Governing equations (Table I)

(b) θβp ≤ θp,0%

(c) θαp ≥ θp,100%

(d)

{
rkp(Θ; j) ≥ 0, j ∈ [1, N − 1]

rkp(Θ;N) ≤ ρ, j = N, ρ ∈ R+

(e) Q ≤ Qki (Θ) ≤ Q, i ∈ M̂

(47)

where Qki is the charged/discharged capacity, computed as:

Qki (Θ) =
νiFLiAcellc

max
s,i

∣∣θi,100% − θi,0%

∣∣
3600

(48)

Inequalities (b) and (c) ensure the two-phase region (defined
between θαp and θβp ) to be contained inside the positive
particle stoichiometric window θp,0%-θp,100%. Constraints
(d) enforce the moving boundary rp to be always positive
for j ∈ [1, N − 1] and, for j = N , to be lower than a
threshold ρ. In this work, complete charge and discharge
profiles are considered. The cell reaches the one-phase at
the end of the charge or discharge process and the moving
boundary rp reaches zero. While ρ should be set to zero, to
soften the constraint and ensure numerical stability we select
ρ = 0.001Rp as threshold. As shown in Section V, softening
this constraint does not affect the model accuracy. Finally,
the constraint (e) ensures charge conservation. Parameters Q
and Q are suitable bounds.

V. RESULTS

Identification results are shown in Table III. Bounds for
the identified parameters (as well as values of the parameters
that are not directly identified) are selected according to
the available literature on LFP batteries [5], [13], [14] and
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information provided by our industrial partner. Bounds for
θαp and θβp ensure the transition from the one- to two-phase
region, and vice versa, to occur at the beginning and at the
end of the flat OCP region. According to Table III, only the
identified θβp hits the corresponding lower bound, equal to
0.8. Given that θβp describes the transition from the one-
to two-phase region, further decreasing this bound is not
physically meaningful since we would enter the two-phase
region of the OCP. In Fig. 2, the simulated voltage and SOC
profiles are compared with C/12 experimental data for both
charge and discharge conditions. The model perform well
also with respect to the simulated open circuit voltage profile,
and as shown in Fig. 2, both the one- (rp/Rp = 0) and
two-phase (rp/Rp > 0) regions are modeled accurately. As
expected from Eq. (9a), the moving boundary reaches zero
once the two-phase region is ended.

VI. CONCLUSIONS

In this paper, a core-shell ESPM framework is proposed.
The introduction of the core-shell dynamics in the modeling
of the positive particle allows to describe the inherent in-
tercalation and deintercalation process of lithium ions. The
proposed core-shell ESPM is a first step for the development
of reduced order models and electrode-based observers to be
used in battery management system (BMS) applications.
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